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Context
Sampling from probability distributions is a classical and fundamentalchallenge in scientific computing and statistics
It has become even more popularized through its key role ingenerative AI and machine learning

molecular dynamics
Input Model

! " !

# = " ! + noise

Data

Bayes inverse problem DALL·E 3
Physical models and observed data often exhibit complex structures with
natural probabilistic interpretations

These probability distributions are very high dimensional
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Problem setting
Goal: draw new samples from π ∝ exp(−V ) either through
▶ queries to the potential V
▶ given some sampled data {xi}Ni=1 ∼ π

Methodology: typically addressed by building dynamics of measures

Implementation of ρt leads to sampling algorithms

MCMC (2D illustrations) diffusion for images
Guiding questions:
▶ Why and how can methods work in high dimensions?
▶ How to design methods for targeted scientific applications?
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Outline of the talk
1 Analysis of unadjusted Langevin in high dimensions

(analysis w/ methodological insights)
▶ A new “delocalization of bias” phenomenon
▶ Inspiration drawn from molecular dynamics simulation

2 Design and application of generative diffusions
(methodology w/ analytical insights)

▶ Probabilistic forecasting (benchmarking Navier-Stokes)
▶ Probabilistic imaging (real data black hole imaging)
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Sampling given queries to the potential V
Markov Chain Monte Carlo (MCMC) provides one of the most widelyused dynamics for sampling π ∝ exp(−V )

One illustration for a 2D Gaussian mixture π (multiple initializations)
A particular class is based on (overdamped) Langevin’s dynamics

dXt = −∇V (Xt)dt+
√
2dWt

Under mild assumptions, as t → ∞, Law(Xt) → π ∝ exp(−V )

▶ In molecular dynamics: V is the inter-atomic potential
▶ In Bayes inverse problem: π is posterior distribution
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MCMC algorithm with Langevin’s dynamics
Overdamped Langevin’s dynamics

dXt = −∇V (Xt)dt+
√
2dWt

Under mild assumptions, as t → ∞, Law(Xt) → π ∝ exp(−V )

▶ Unadjusted Langevin: Euler–Maruyama scheme
X(k+1)h = Xkh − h∇V (Xkh) +

√
2(W(k+1)h −Wkh)

As k → ∞, Law(Xkh) → πh where hopefully πh ≈ π (bias)

▶ How large is the bias? For V ∈ C2 with αI ⪯ ∇2V ⪯ βI:
W2(π, πh) = O(

β

α

√
dh) [Durmus, Moulines, 2019], etc.

▶ Implication: h ∼ 1/d for bounded bias in any dimension
Can be improved to h ∼ 1/d1/2 with more assumptions [Li, Zha, Tao 2022]
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Bias can be completely eliminated
Metropolis-adjusted Langevin: acceptX(k+1)h w/ probability

paccept = min

®
1,

π(X(k+1)h)q(Xkh|X(k+1)h)

π(Xkh)q(X(k+1)h|Xkh)

´
where q is the transition kernel of unadjusted Langevin; otherwisereject andX(k+1)h = Xkh. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

However, for this algorithm, hmust be small when d is large
▶ Existing theory suggests h ∼ 1/d1/3, 1/d1/2, 1/d depending onnotion of convergence and distribution ofX0

[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,
Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

▶ This is necessary for non-negligible acceptance rates
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Performance illustration: for fixed stepsize h
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Unadjusted and adjusted Langevin: Gaussian targets and fixed h

Adjusted Langevin: acceptance rate

▶ Fixed h seems to fail when d increases
▶ Existing theory: h ∼ 1/dc is required

Is this a full story?



9/28

Empirical evidence in molecular dynamics
Variants of unadjusted Langevin routinely applied in high dims

[Gapsys, Kopec, Matthes, de Groot 2024]
This is achieved using h = a few fs, without reducing stepsize
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What could be the catch?
Often high dimensionality occurs when many nuisance variables arerequired to accurately describe the remaining variables’ distribution

[Thanks to Spencer Guo]

Molecular dynamics (MD) example
▶ We care about averages withrespect to a few atoms in the voltagesensing protein in the middle
▶ We do not care about averages withrespect to atoms in the lipid orwater molecules
▶ We need all the atoms to accuratelydescribe the system
“What we finally measure” matters?
Disclaimer: the potential V in MD is morecomplicated than our current analysis
would cover
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Measuring errors of low dimensional marginals
Goal: measure 1D marginal errorW2(π

(j), π
(j)
h ), 1 ≤ j ≤ d

through a metric that incorporates all coordinates
StandardW2 metric: ℓ2 measures full coordinates

W2(π, πh) =

Å
min

γ∈Π(π,πh)

∫
|x− y|22 γ(dx,dy)

ã1/2
where Π(π, πh) is the set of all couplings between π and πh
NewW2,ℓ∞ metric: replace ℓ2 by ℓ∞

W2,ℓ∞(π, πh) =

Å
min

γ∈Π(π,πh)

∫
|x− y|2∞γ(dx, dy)

ã1/2
Property: W2,ℓ∞(π, πh) ≥ W2(π

(j), π
(j)
h ) serves an upper bound

▶ Extends to anyK marginals at the cost of a factor√K
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How would bias behave under theW2,ℓ∞ metric?
Example: W2,ℓ∞ bias for product measures

Consider π ∝ exp(−V ) where V (x) =
∑d

i=1 Vi(x
(i)) satisfies

α ≤ ∇2Vi ≤ β. Then it holds that
W2,ℓ∞(π, πh) = O(

β

α

»
h log(2d))

Example: W2,ℓ∞ bias for Gaussian measures

Consider π ∝ exp(−V ) and V (x) = 1
2(x−m)TΣ−1(x−m) where

m ∈ Rd and αI ⪯ Σ−1 ⪯ βI . Then it holds
W2,ℓ∞(π, πh) = O

(»
h log(2d)

)

Both cases: W2,ℓ∞ bias, and 1DW2 bias, are nearly dimension free
Is this a universal phenomenon?
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Negative example: W2,ℓ∞ bias for rotated product measures

Consider π = ρ⊗d where ρ is a 1D centered distribution, such that themean of ρ and the biased ρh differs by δ > 0.
Let π̃ = Q#π whereQ is a rotation (Qx)(1) = 1√

d

∑d
i=1 x

(i). Then
W2,ℓ∞(π̃, π̃h) ≥

√
dδ

where π̃h is the corresponding biased distribution for π̃
Proof sketch: we have π̃h = Q#πh

W2,ℓ∞(π̃, π̃h) ≥ W1,ℓ∞(π̃, π̃h)

≥
∣∣∣∣
∫

x(1)(π̃ − π̃h)

∣∣∣∣

=

∣∣∣∣∣

∫
(
1√
d

d∑

i=1

x(i))(π − πh)

∣∣∣∣∣ =
√
dδ

This example exhibits global and strong interactions (due to rotation)
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Theorem: W2,ℓ∞ bias for sparse/local potentials

For V ∈ C2 with αI ⪯ ∇2V ⪯ βI that satisfies the sparsitycondition illustrated in the figure with sk ≤ C(k + 1)n, then
W2,ℓ∞(π, πh) ≤

»
h log(2d)

Å
O
(β
α
log(2d)

)ãn
2
+1

Some 𝑖th variable 𝑥(")

1st layer: 𝑁$(𝑥("))

2nd layer: 𝑁%(𝑥("))

Potential 𝑉 𝑥 = 	∑ 𝑉"(𝑥)&
"'$

and 𝑉" only depends on 𝑁$(𝑥("))

Sparsity parameter 𝑠( = max
"
	 𝑁( 𝑥 " . This example: 𝑠( = 𝑂(𝑘%)

▶ Proof based on sparsity analysis for propagators of unadjustedLangevin to control ℓ∞ errors; and coupling arguments
▶ Weak global mean field interaction works too (see others in paper)
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Updated performance illustration: for fixed stepsize h
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Unadjusted and adjusted Langevin: Gaussian targets and fixed h

Adjusted Langevin: acceptance rate

▶ Same forK-marginals, ifK is independent of dimension
(under the assumption of Gaussian or sparse/local/weak interactions)
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Take-home messages: delocalization of bias
[Chen, Cheng, Niles-Weed, Weare 2024]

Even if a system is extremely high dimensional, bias of a small part ofthe system can be nearly dimension-free
▶ No curse of dims if interested in low-dim marginals!

(under the assumption of Gaussian or sparse/local/weak interactions)

Algorithmic insights (ongoing and future work)
▶ “Do not Metropolize in very high dims!”
▶ Development of multilevel unadjusted schemes [Giles 2015], [Ruzayqat,

Chada, Jasra 2023], [Chada, Leimkuhler, Paulin, Whalley 2024]
Theoretical outlook (ongoing and future work)
▶ Non-log-concave measures (e.g., by reflection coupling)
▶ General approximation of general dynamics: metric is key!
▶ Relative bias of observables corresponding to rare events
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Generative model: draw new samples from π, given data {xi}Ni=1 ∼ π

Recent advances in generative modeling driven by building dynamicsof measures that can be learned from data efficiently

Diffusion models, score based generative models

Stochastic interpolants, rectified flow, flow matching, bridge matching
[Sohl-Dickstein et al 2015], [Ho, Jain, Abbeel 2020], [Song et al 2021], [Peluchetti 2021], [DeBortoli et al. 2021], [Albergo, Vanden-Eijnden, 2022], [Liu, Gong, Liu 2022], [Lipman et al 2022],[Albergo, Boffi, Vanden-Eijnden 2023], [Shi et al 2023], etc.
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Probabilistic forecasting through generative modeling
A benchmark case study: 2d NSE with stochastic forcing

dω + v · ∇ωdt = ν∆ωdt− αωdt+ ϵdη on T2

▶ vorticity ω, velocity v, and dη is white-in-time random forcing
Ergodicity: [Hairer, Mattingly, 2006]

Set-up: given data pairs (ωt, ωt+τ ) at many t under stationarity
Task: build a generative model that takes a state ωt as input andsamples the conditional distribution ρ⋆(·|ωt) of ωt+τ |ωt

where we use x0 = ωt and x1 = ωt+τ in the notation
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Goal: Build a generative dynamicsX0≤s≤1 from x0 to x1 ∼ ρ⋆(·|x0)[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]
Methodology: Construct the stochastic process

Is = αsx0 + βsx1 + σsWs

▶ α0 = β1 = 1 and α1 = β0 = σ1 = 0 so that I0 = x0, I1 = x1

▶ W is a Brownian motion withW ⊥ (x0, x1)

Define bs(x, x0) = E[α̇sx0 + β̇sx1 + σ̇sWs|Is = x, x0] and
dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0

It holds Law(Xs) = Law(Is|x0). In particularXs=1 ∼ ρ⋆(·|x0)

▶ Why? Itô’s formula: dIs = (α̇sx0 + β̇sx1 + σ̇sWs)ds+ σsdWs

▶ Replacing drift by E[α̇sx0 + β̇sx1 + σ̇sWs|Is, x0]makes the SDEMarkovian while keeping time-marginals unchanged
Mimicking lemma, Markov projection [Gyöngy 1986]
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Learning the generative dynamics from data
The drift bs(x, x0) = E[α̇sx0 + β̇sx1 + σ̇sWs|Is = x, x0]

▶ Fact: the drift bs(x, x0) is the unique minimizer of
Lb[b̂s] =

∫ 1

0
E
[
|b̂s(Is, x0)− α̇sx0 − β̇sx1 − σ̇sWs|2]ds

with sampled data (x0, x1) we can evaluate Lb

▶ Algorithm: parametrize b̂s by neural nets, optimize Lb

▶ Generative model: for any x0, integrate to s = 1 the SDE
dX̂s = b̂s(X̂s, x0)ds+ σsdWs, X̂s=0 = x0

This will approximately sample ρ⋆(·|x0) if b̂s ≈ bs
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Experiments: Forecasting 2D stochastically forced NSE

Figure: Lag τ = 2 (autocorrelation 10%). Resolution 128× 128, using 200Kdata pairs for training 2M-parameter-Unet
▶ As a surrogate model: for this example 100 times faster thanrunning the stochastic PDE simulation
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Experiments: Forecasting and superresolution
Let ωt be of 32× 32 while ωt+τ is of 128× 128

Figure: Probabilistic forecasting with low resolution input, using 200K datapairs for training 2M-parameter-Unet
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A family of SDEs can be used. Which to choose?
Fact: It holds that Law(Xs) = Law(Xg

s ) for
dXg

s = bgs(X
g
s , x0)ds+ gsdWs

with bgs(x, x0) = bs(x, x0) +
1
2(g

2
s − σ2

s)∇ log ρs(x|x0)

▶ Fact due to Fokker-Planck equations and∇ · (ρ∇ log ρ) = ∆ρ

▶ ∇ log ρs(x|x0) is the score, with ‘score an estimator
New “learned” drift: b̂gs = b̂s +

1

2
(g2s − σ2

s)‘score

Many existing studies on how to choose g in generative models
▶ ODEs versus SDEs, numerical schemes, perturbation analysis

[Song et al 2021], [Song, Meng, Ermon 2021], [Karras, Aittala, Aila, Laine 2022], [Zhang,
Tao, Chen 2023], [Albergo, Boffi, Vanden-Eijnden 2023], [Cao, Chen, Luo, Zhou 2024]

Answer to this question would depend on the choice of “metric”
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KL divergence over path measures as the “metric”: theory and practice
Theorem: Let PXg and PX̂g denote the path measures of
▶ the truth SDE solutionXg = (Xg

s )s∈[0,1] with drift bg
▶ the approximation X̂g = (X̂g

s )s∈[0,1] with learned b̂g
Then, the path-level KL optimization

min
g

KL[PXg∥PX̂g
]

has an explicit solution g = gF with
gFs =

∣∣∣∣2sσ2
s

d

ds
log

βs√
sσs

∣∣∣∣
1/2

Interpretation: βs√
sσs

is
∼ “signal-to-noise ratio”
since by definition
Is = αsx0 + βsx1 + σsWs

SDE with σsdWs SDE with gFs dWs ODE with Gaussian base
8.49e-3±1.57e-3 2.79e-3±9.19e-4 4.63e-3±9.63e-4

Empirical end-point KL err (total enstrophy of truth v.s. generated samples)



24/28

KL divergence over path measures as the “metric”: theory and practice
Theorem: Let PXg and PX̂g denote the path measures of
▶ the truth SDE solutionXg = (Xg

s )s∈[0,1] with drift bg
▶ the approximation X̂g = (X̂g

s )s∈[0,1] with learned b̂g
Then, the path-level KL optimization

min
g

KL[PXg∥PX̂g
]

has an explicit solution g = gF with
gFs =

∣∣∣∣2sσ2
s

d

ds
log

βs√
sσs

∣∣∣∣
1/2

Interpretation: βs√
sσs

is
∼ “signal-to-noise ratio”
since by definition
Is = αsx0 + βsx1 + σsWs

SDE with σsdWs SDE with gFs dWs ODE with Gaussian base
8.49e-3±1.57e-3 2.79e-3±9.19e-4 4.63e-3±9.63e-4

Empirical end-point KL err (total enstrophy of truth v.s. generated samples)



25/28

Further insights: What is special about this gF?
Theorem: The optimalXF := XgF is an Föllmer process
▶ Solution to Schrödinger bridge when one endpoint is point mass

XF = argmin
X

KL[PX∥PXprior
] s.t. X1 ∼ ρ⋆(·|x0)

Standard Föllmer: Xprior is a Brownian motionIn our algorithm: Xprior is induced by the choices of αs, βs, σs

Interpretation: such optimal gF is a “Bayes”/control solution!
[Schrödinger 1932]. Föllmer process [Föllmer 1986] wide applications in functional inequality[Lehec 2013] and in sampling [Zhang, Chen 2021], [Huang et al 2021], [Vargas et al 2023], etc
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X

KL[PX∥PXprior
] s.t. X1 ∼ ρ⋆(·|x0)

Standard Föllmer: Xprior is a Brownian motionIn our algorithm: Xprior is induced by the choices of αs, βs, σs

Outlook: Design physically motivatedXprior (ongoing and future work)
▶ Multiscale interpolation Is, connected to renormalization group

e.g., [Bauerschmidt, Bodineau, Dagallier 2023]
▶ Function space noise with spectrum decay

e.g., [Lim et al 2023], [Pidstrigach, Marzouk, Reich, and Wang 2023]
▶ Improved design choices for better numerical performance

e.g., [Lim, Wang, Yu, Hart, Mahoney, Li, Erichson 2024]
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Outline of the talk
1 Analysis of unadjusted Langevin in high dimensions

(analysis w/ methodological insights)
▶ A new “delocalization of bias” phenomenon
▶ Inspiration drawn from molecular dynamics simulation

2 Design and application of generative diffusions
(methodology w/ analytical insights)

▶ Probabilistic forecasting (benchmarking Navier-Stokes)
▶ Probabilistic imaging (real data black hole imaging)
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Black hole imaging: Combining generative models and MCMC
[Sun, Wu, Chen, Feng, Bouman 2023], [Wu, Sun, Chen, Zhang, Yue, Bouman 2024]

As a Bayes inverse problem
▶ Data: nonlinear functions ofFourier components of theimage (very sparse and withstrong noise)
▶ Prior: black holes simulatedbased on General RelativisticMagnetohydrodynamics(GRMHD)

Goal: sample ρpost ∝ ρprior × Llikelihood

Approach: learn ρprior using generative dynamics and combine withdesigned MCMC dynamics to sample ρpost
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Experiments with real data: PnP-DM (plug-and-play diffusion models)
PnP-DM uses split-Gibbs (alternating prior and likelihood update)
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Summary
High dimensional sampling with applications in scientific computing
▶ Delocalization of high dimensional stochastic errors(analysis inspired by observation in molecular dynamics)

[Chen, Cheng, Niles-Weed, Weare 2024]
▶ Interpolation and transport stochastic dynamics(design motivated by probabilistic forecasting)

[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]
▶ Generative priors and MCMC sampling(real imaging applications)

[Sun, Wu, Chen, Feng, Bouman 2023], [Wu, Sun, Chen, Zhang, Yue, Bouman 2024]
▶ Goal: some more principled analysis and design of dynamics

Thank you!
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Back-Up Slides
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Unadjusted Langevin bias: asymptotic perspective using PDEs
Bias of observables: asymptotic expansion
Assume f is sufficiently regular and ∫ fπ = 0. Then, it holds

∫
fπ −

∫
fπh = −1

4
h

Å∫
(∆f + f∆ log π)π

ã
+ o(h)

▶ Obtained by comparing the generators of π and πh
Lu(x) = ∇ log π(x) · ∇u(x) + ∆u(x)

Lhu(x) =
1

h
(E[u(x+ h∇ log π(x) +

√
2hξ)]− u(x))

▶ For Gaussian π, ∫ f(∆ log π)π = 0. The first order term ∫ π∆fonly depends on the coordinates that f takes
▶ Delocalization of observable bias: hold for perturbation ofGaussians too, up to o(h)

Poisson argument [Mattingly, Stuart, Tretyakov 2010]. Related discussion on averagedobservables [Bou-Rabee, Schuh 2023], [Durmus, Eberle 2024]
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Black hole imaging: experiments with two modal synthetic data
Mode 2Mode 1

9e-3

0.0

<latexit sha1_base64="1MZpKbTtjWY7+NgJzh09sxd8OlE="></latexit>| {z }
DPS

3.24 41.17 788.44

Mode 3

19.79

45.79

15.67

5.58

1087.77

550.14

3.24

3.23

6.19

Mode 2Mode 1

2.60

2.83

2.92

4.193.12

2.60

3.22

2.38

Ground truth

<latexit sha1_base64="e45MGNrssxesSN5lX0lJ/w2Yr/A="></latexit>u

<latexit sha1_base64="ypQ60mojgKSM35Id65I/+e61i8Q="></latexit>v

Fourier spectrum

Zoom-in on low-freq.

(Reconstruction from 
fully sampled low-freq.)

(a)
Data-fidelity ( )↓

(b)

<latexit sha1_base64="5Xk/EpwtMrd+Mzt6SkJoAh8NewQ="></latexit>| {z }
Ours: PnP-DM (EDM)

M
ean im

age
Data mismatch ( )↓

60μas 60μas 60μas 60μas

Posterior sam
ples

▶ DPS: existing benchmark [Chung et al 2022]
▶ Ours: PnP-DM (plug-and-play diffusion models) using splitGibbs, with mathematical consistency guarantee
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Forecasting videos: CLEVER datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A new,red cube enters the scene. Third row: Real trajectory. Fourth row:Generated trajectory. A new green cube enters the scene, and collisionphysics is respected (green ball hits red cube).



34/28

Forecasting videos: quantitative results

KTH CLEVRER

Method 100k 250k 100k 250k
RIVER 46.69 41.88 60.40 48.96PFI (ours) 44.38 39.13 54.7 39.31
Auto-enc. 33.45 33.45 2.79 2.79

Table: FVD computed on 256 test set videos, with the model generating 100completions for each video. Results are reported for 100k grad steps and250k. The auto-enc represents the FVD of the pretrained encoder-decodervs the real data. It serves as a bound on the possible model performance, asthe modeling is done in the latent space of a pre-trained VQGAN.
RIVER [Davtyan, Sameni, Favaro 2023]
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Proof of delocalization of bias: sketch of arguments
Synchronous coupling of Brownian motion
▶ Continuous time Yt, t ∈ [kh, (k + 1)h] and unadjustedXkh

X(k+1)h = Xkh − h∇V (Xkh) +
√
2(B(k+1)h −Bkh)

coupled with the sameBt

▶ Define Y (k+1)h = Ykh − h∇V (Ykh) +
√
2(B(k+1)h −Bkh)»

E[|X(k+1)h − Y(k+1)h|2∞]

≤
»
E[|X(k+1)h − Y (k+1)h|2∞]

︸ ︷︷ ︸(a)
+
»
E[|Y (k+1)h − Y(k+1)h|2∞]

︸ ︷︷ ︸(b) “discretization error”

▶ Part (b): discretization error =O(βh3/2
√
log(2d))

(reminiscent of the fact that E[|Bt|2∞] ≤ t log(2d))
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▶ Part (a):
(a) =»E[|Xkh − Ykh − h(∇V (Xkh)−∇V (Ykh))|2∞]

=
»

E[|Hk(Xkh − Ykh)|2∞]

whereHk = I − h
∫ 1

0
∇2V (uXkh + (1− u)Ykh)du

▶ When∇2V is diagonal, |Hk|∞ = |Hk|2 ≤ 1− αh ≤ exp(−αh) so weget contraction
▶ In general,Hk is non-diagonal but sparse. We have

|Hk|∞ ≤ √
s1|Hk|2 ≤ √

s1 exp(−αh)

Not a one-step contraction in general
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Sketch of arguments: multiple-step coupling
▶ One-step iteration»

E[|X(k+1)h − Y(k+1)h|2∞] ≤
»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

▶ Moving back and two-step iterations»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

≤
»

E[|Hk(Xkh − Y kh)|2∞] +
»
E[|Hk(Y kh − Ykh)|2∞] + error(1)

=
»
E[|HkHk−1(X(k−1)h − Y(k−1)h)|2∞] + error(2)

▶ N -step iterations»
E[|X(k+N)h − Y(k+N)h|2∞]

≤
»
E[|Hk+N−1Hk+N−2 · · ·Hk(Xkh − Ykh)|∞] + error(N)

≤ exp(−αNh)
√
d
»
E[|Xkh − Ykh|2∞] + error(N)

HereN ∼ (log d)/h leads to a contraction
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Sketch of arguments: bound discretization errors

How to control error(N)?
▶ ForN = 1:

E[|Y (k+1)h − Y(k+1)h|2∞]

=E[|
∫ (k+1)h

kh

∇V (Yt)−∇V (Ykh)dt|2∞]

≤h

∫ (k+1)h

kh

E[|∇V (Yt)−∇V (Ykh)|2∞]dt

≤h

∫ (k+1)h

kh

∫ 1

0

E[|∇2V (uYt + (1− u)Ykh)(Yt − Ykh)|2∞]dudt

≤hs1β
2

∫ (k+1)h

kh

E[|Yt − Ykh|2∞]dt = hs1β
2 ·O(h2 log(2d))
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Sketch of arguments: bound discretization errors
How to control error(N)?
▶ ForN = 2:

E[|Hk(Y kh − Ykh)|2∞]

≤h

∫ kh

(k−1)h

E[|Hk(∇V (Yt)−∇V (Y(k−1)h))|2∞]dt

≤h

∫ kh

(k−1)h

∫ 1

0

E[|Hk(∇2V (uYt + (1− u)Y(k−1)h))(Yt − Y(k−1)h)|2∞]dudt

▶ Now, how to bound |Hk(∇2V (uYt + (1− u)Y(k−1)h))|∞?
▶ A simple bound

|Hk(∇2V (uYt + (1− u)Y(k−1)h))|∞ ≤ √
s2β exp(−αh)

▶ Issue: The bound does take into account sparsity, but thesparsity growth s2 does not depend on h
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Sketch of arguments: sparsity growth bound
Consider the generalN -case
▶ Let JN = |Hk+N−1Hk+N−2 · · ·Hk(∇2V (uYt + (1− u)Y(k−1)h)|∞,then simple bound |JN |∞ ≤ β

√
sN exp(−αNh)

The issue again is that sN does not depend on h
▶ Improved bound by using sparsity bound for terms involvingsmall powers of h and using maximum bound for termsinvolving large powers of h

|JN |∞ ≤ β(
√
sr exp(−αNh) +

√
d exp(−r))

for any r ≥ e2Nhβ

▶ In particular, taking rN = ⌈e2Nhβ + log
√
d⌉ leads to

|JN |∞ ≤ 2β
√
srN exp(−αNh)

Here rN scales with physical timeNh
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Sketch of arguments: back to discretization errors

Back to the estimate of error(N)

▶ ForN = 2:
E[|Hk(Y kh − Ykh)|2∞]

≤h

∫ kh

(k−1)h

E[|Hk(∇V (Yt)−∇V (Y(k−1)h))|2∞]dt

≤h

∫ kh

(k−1)h

∫ 1

0

E[|Hk(∇2V (uYt + (1− u)Y(k−1)h))(Yt − Y(k−1)h)|2∞]dudt

≤4hsr2β
2 exp(−2αh)

∫ kh

(k−1)h

E[|Yt − Y(k−1)h|2∞]dt

=4hsr2β
2 exp(−2αh) ·O(h2 log(2d))
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Sketch of arguments: back to discretization errors
Putting everything together
▶ For generalN :

error(N) ≤ 2β

(
N∑

i=1

exp(−αh(i− 1))
√
sri

)
·O
(
h3/2
»
log(2d)

)

▶ Therefore, we get
W2,ℓ∞(ρ(k+N)h, π) ≤ exp(−αNh)

√
dW2,ℓ∞(ρkh, π) + error(N)

▶ Using sk = O((k + 1)n) and takingN = ⌈ log(2
√
d)

hα ⌉

W2,ℓ∞(ρ(k+N)h, π) ≤
1

2
W2,ℓ∞(ρkh, π)+

»
h log(2d)

Å
O
(β
α
log(2d)

)ãn
2 +1

▶ FinallyW2,ℓ∞(πh, π) ≤
√
h log(2d)

Ä
O
(
β
α log(2d)

)än
2 +1


