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Context
Sampling from probability distributions is a classical and fundamental
challenge in scientific computing and statistics

It has become even more popularized through its key role in
generative Al and machine learning

i = m

R 0 6(6) '
molecular dynamics Bayes inverse problem DALL-E 3

Physical models and observed data often exhibit complex structures with
natural probabilistic interpretations

These probability distributions are very high dimensional
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Problem setting
Goal: draw new samples from m o< exp(—V') either through
> queries to the potential V'

> given some sampled data {z;}Y, ~ 7

Methodology: typically addressed by building dynamics of measures

t=>T (0<T < )
Po » T

Initial distribution Target distribution

Implementation of p, leads to sampling algorithms
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Problem setting

Goal: draw new samples from 7 o< exp(—V’) either through
> queries to the potential V'
> given some sampled data {z;}Y, ~ 7

Methodology: typically addressed by building dynamics of measures

« ? « ! .
’

-

MCMC (2D illustrations) diffusion for images

Guiding questions:
» Why and how can methods work in high dimensions?
» How to design methods for targeted scientific applications?
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Outline of the talk

Analysis of unadjusted Langevin in high dimensions
(analysis w/ methodological insights)

> A new “delocalization of bias” phenomenon

» Inspiration drawn from molecular dynamics simulation

Design and application of generative diffusions
(methodology w/ analytical insights)

> Probabilistic forecasting (benchmarking Navier-Stokes)

> Probabilistic imaging (real data black hole imaging)
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Sampling given queries to the potential V'

Markov Chain Monte Carlo (MCMC) provides one of the most widely
used dynamics for sampling 7 o< exp(—V')

One illustration for a 2D Gaussian mixture 7 (multiple initializations)
A particular class is based on (overdamped) Langevin’s dynamics
dX; = —VV(X,)dt + v2dW;

Under mild assumptions, as t — oo, Law(X;) — 7 o exp(—V)

» In molecular dynamics: V' is the inter-atomic potential
» In Bayes inverse problem: 7 is posterior distribution
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MCMC algorithm with Langevin’s dynamics

Overdamped Langevin’s dynamics
dX, = —VV(X;)dt + v2dW,

Under mild assumptions, as ¢t — oo, Law(X;) — 7 o exp(—V)

» Unadjusted Langevin: Euler-Maruyama scheme
Xt vyn = Xin — BV (Xin) + V2 (Wi 1yn — Win)

As k — oo, Law(Xkp,) — 73, where hopefully 7, =~ 7 (bias)
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MCMC algorithm with Langevin’s dynamics

Overdamped Langevin’s dynamics

dX, = —VV(X;)dt + v2dW,

Under mild assumptions, as ¢t — oo, Law(X;) — 7 o exp(—V)

» Unadjusted Langevin: Euler-Maruyama scheme
X(ryh = Xen — WYV (Xin) + V2(Wiger1yn — Wan)
As k — oo, Law(Xkp,) — 73, where hopefully 7, =~ 7 (bias)
> How large is the bias? For V € C? with a < V2V < BI:

Wy (7T, 7Th) = O(év dh) [Durmus, Moulines, 2019], etc.
o

» Implication: h ~ 1/d for bounded bias in any dimension

Can be improved to h ~ 1/d/2 with more assumptions [Li, Zha, Tao 2022]
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Bias can be completely eliminated

Metropolis-adjusted Langevin: accept X(k+1)h w/ probability

(X (ke 1)n) 4 Xkn| X k41)n)
T( Xk ) 4( X kg 1) Xken)
where ¢ is the transition kernel of unadjusted Langevin; otherwise

reject and X1y, = Xgn. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

Daccept = min {L
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Bias can be completely eliminated

Metropolis-adjusted Langevin: accept X(k+1)h w/ probability

(X (ke 1)n) 4 Xkn| X k41)n)
T (Xkn)a(X (k4 1)8 | Xkn)
where ¢ is the transition kernel of unadjusted Langevin; otherwise

reject and X1y, = Xgn. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

Daccept = min {L

However, for this algorithm, i must be small when d is large

> Existing theory suggests h ~ 1/d'/3,1/d"/? 1/d depending on
notion of convergence and distribution of X,
[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

» This is necessary for non-negligible acceptance rates
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Performance illustration: for fixed stepsize h

Unadjusted and adjusted Langevin: Gaussian targets and fixed h

] 10(]

10° 9% 107!
@ —e— Adjusted Langevin: acceptance rate 8x 107" o
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~ c
< [
‘O c
2 6 x 1071 ‘g
@ —o— Unadjusted Langevin: Wasserstein-2 bias o]
@ O
= ©

-1

1071} 5x 10
10! 102 103
dimension

» Fixed h seems to fail when d increases
» Existing theory: h ~ 1/d° is required

Is this a full story?
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Empirical evidence in molecular dynamics

Variants of unadjusted Langevin routinely applied in high dims

rHt V-2 cryptic pockets, MSM = Distributed computing
100 ms 5} === Parallel computing
10 ms COVID M3drghot
@reH
(0] 1ms .Larqo FEP dataset exaflopisoline
g ® SM o Minimal cell (prediction)
prav] e Exacycle nton
= 100 “S .PF xascale Alchemy
o M Raven, AWS cloud
,_*3‘ 10 us -
>
g 1 Hs S TS e g petaflopisoline SARS-Cov-2 virion
) S, ORNL Summit
100 ns ieicieFilaver SRS ; [} #COVIDisAirborne
Yesicle bilayer complex Exaflopisoline gQRN-Summit
°
Cellular crowded systems,
10 ns Genesis on Fugaky @
petaflopisoline
1ns
10° 10° 107 108 10?

#atoms

Current Opinion in Structural Biology
[Gapsys, Kopec, Matthes, de Groot 2024]

This is achieved using h = a few fs, without reducing stepsize
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What could be the catch?

Often high dimensionality occurs when many nuisance variables are
required to accurately describe the remaining variables’ distribution J

Molecular dynamics (MD) example

> We care about averages with
respect to a few atoms in the voltage
sensing protein in the middle

» We do not care about averages with
respect to atoms in the lipid or
water molecules

> We need all the atoms to accurately
describe the system

“What we finally measure” matters?

Disclaimer: the potential V' in MD is more
complicated than our current analysis

[Thanks to Spencer Guo]

would cover
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Measuring errors of low dimensional marginals

Goal: measure 1D marginal error WQ(W(j),W}(Lj)), 1<j<d J
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Measuring errors of low dimensional marginals

Goal: measure 1D marginal error Wg(ﬂ(j),ng)), 1<j<d J

through a metric that incorporates all coordinates
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Measuring errors of low dimensional marginals

Goal: measure 1D marginal error Wg(ﬂ'(j),?'(}(Lj)), 1<5<d J

through a metric that incorporates all coordinates

Standard 175 metric: £2 measures full coordinates

1/2
wamm) = (i [ 1o = yBtar )
YyEIl(m, )

where II(7, 7,) is the set of all couplings between 7 and 7y,

New W5 s metric: replace ¢2 by £

1/2
Wase(mm) = (_min  [1o - yPrtan,ay)
~YEIL(m,m)

Property: W5 yoo (0, 7p,) > Wg(ﬂ'(j), w,(j)) serves an upper bound

» Extends to any K marginals at the cost of a factor v K
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How would bias behave under the W5 ;- metric?

Example: 15 o bias for product measures

Consider 7 ox exp(—V') where V(x) = Zle V;(z) satisfies
a < V2V; < B. Then it holds that

W g (r,7) = O /hlog(24)
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How would bias behave under the W5 ;- metric?

Example: 15 o bias for product measures

Consider m o< exp(—V') where V' (z) = Zle V;(z) satisfies
a < V2V; < B. Then it holds that

W g (r,7) = O /hlog(24)

Example: 1/ s bias for Gaussian measures

Consider 7 oc exp(—V) and V(z) = 2 (z — m)TS~! (z — m) where
m € R%and af < =1 < BI. Then it holds

Wa, oo (0, 7) = O ( hlog(2d)>
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How would bias behave under the W5 ;- metric?

Example: 15 o bias for product measures

Consider m o< exp(—V') where V' (z) = Zle V;(z) satisfies
a < V2V; < B. Then it holds that

W g (r,7) = O /hlog(24)

Example: 1/ s bias for Gaussian measures

Consider 7 oc exp(—V) and V(z) = 2 (z — m)TS~! (z — m) where
m € R%and af < =1 < BI. Then it holds

Wa, oo (0, 7) = O ( hlog(2d)>

Both cases: W» ¢ bias, and 1D W5 bias, are nearly dimension free

Is this a universal phenomenon?
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Negative example: 115 ;- bias for rotated product measures

Consider 7 = p®? where pis a 1D centered distribution, such that the
mean of p and the biased py, differs by § > 0.

Let 7 = Q# where Q is a rotation (Qz)") = ﬁ >4 2@, Then

Woge (%, 7p) > Vdo

where 7}, is the corresponding biased distribution for 7

Proof sketch: we have 7, = Q+#my,

Wzgoo(ﬂ‘ 7Th >ngoo 7~T7~T)

'/ (7 — )

S ey —n
—'/%; ) — )

This example exhibits global and strong interactions (due to rotation)

= /dé
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Theorem: W5 - bias for sparse/local potentials

For V € C? with al < V2V < BI that satisfies the sparsity
condition illustrated in the figure with s, < C(k + 1)", then

2y
Wo poo (10, ) < 4/ hlog(2d) <O(§log(2d))> "

—¢7 Some ith variable x® .

_g: 1st layer: N; (x() ..
_ | 2nd layer: N, (x®) ..O

Potential V(x) = B, Vi(x)
— and V; only depends on N; (x()

Sparsity parameter s = max |Nk(x(i))| . This example: s, = 0(k?)
L
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Theorem: W5 - bias for sparse/local potentials

For V € C? with al < V2V < BI that satisfies the sparsity
condition illustrated in the figure with s, < C'(k + 1), then

!
Wo poo (10, ) < 4/ hlog(2d) <O(§log(2d))>
—¢7 Some ith variable x( .

_g: 1st layer: N; (x() ..
_ 2nd layer: N, (x®) . .O

Potential V(x) = B, Vi(x)
— and V; only depends on N; (x()

Sparsity parameter s = max |Nk(x(i))| . This example: s, = 0(k?)
L
» Proof based on sparsity analysis for propagators of unadjusted
Langevin to control £°° errors; and coupling arguments

> Weak global mean field interaction works too (see others in paper) s



Updated performance illustration: for fixed stepsize h

Unadjusted and adjusted Langevin: Gaussian targets and fixed h

—_
o
|

Wasserstein-2 bias

—e— Adjusted Langevin: acceptance rate

—e— Unadjusted Langevin: Wasserstein-2 bias

—e— Unadjusted Langevin: Wasserstein-2 bias for 1D marg\nals

O e

—— L J

10! 102 10°
dimension

» Same for K-marginals, if K is independent of dimension
(under the assumption of Gaussian or sparse/local/weak interactions)

100
9x 1071

8 x 107!

7 x 1071

6 x 107!

5x 1071

acceptance rate
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Take-home messages: delocalization of bias
[Chen, Cheng, Niles-Weed, Weare 2024]

Even if a system is extremely high dimensional, bias of a small part of
the system can be nearly dimension-free J

» No curse of dims if interested in low-dim marginals!
(under the assumption of Gaussian or sparse/local/weak interactions)
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Take-home messages: delocalization of bias
[Chen, Cheng, Niles-Weed, Weare 2024]

Even if a system is extremely high dimensional, bias of a small part of
the system can be nearly dimension-free J

» No curse of dims if interested in low-dim marginals!
(under the assumption of Gaussian or sparse/local/weak interactions)

Algorithmic insights (ongoing and future work)
> “Do not Metropolize in very high dims!”

» Development of multilevel unadjusted schemes [Giles 2015], [Ruzayqat,
Chada, Jasra 2023], [Chada, Leimkuhler, Paulin, Whalley 2024]

Theoretical outlook (ongoing and future work)
> Non-log-concave measures (e.g., by reflection coupling)
» General approximation of general dynamics: metric is key!
> Relative bias of observables corresponding to rare events
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Outline of the talk

Design and application of generative diffusions
(methodology w/ analytical insights)

> Probabilistic forecasting (benchmarking Navier-Stokes)
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Generative model: draw new samples from 7, given data {z;}¥ | ~ 7

Recent advances in generative modeling driven by building dynamics
of measures that can be learned from data efficiently

ODE SDE

” V ’
P(2) vs time P(2) vs time

Stochastic interpolants, rectified flow, flow matching, bridge matching

[Sohl-Dickstein et al 2015], [Ho, Jain, Abbeel 2020], [Song et al 2021], [Peluchetti 2021], [De
Bortoli et al. 2021], [Albergo, Vanden-Eijnden, 2022], [Liu, Gong, Liu 2022], [Lipman et al 2022],
[Albergo, Boffi, Vanden-Eijnden 2023], [Shi et al 2023], etc.
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Probabilistic forecasting through generative modeling

A benchmark case study: 2d NSE with stochastic forcing

dw 4 v - Vwdt = vAwdt — awdt + edn  on T?

» vorticity w, velocity v, and d is white-in-time random forcing
Ergodicity: [Hairer, Mattingly, 2006]

Set-up: given data pairs (w, w4 ) at many ¢ under stationarity

Task: build a generative model that takes a state w; as input and
samples the conditional distribution p*(-|w;) of Wiy |wy

where we use zo = w; and £1 = w4, in the notation
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Goal: Build a generative dynamics Xo<<1 from zg to 21 ~ p*(-|x¢)
[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]

Methodology: Construct the stochastic process
Is = aszo + Bsx1 + osWs
> apg=p1=1landa; = By = 01 = 0sothat Iy = zg, [1 = 1
» TV is a Brownian motion with W' L (z¢, z1)
Define b,(x, 29) = E[dusxo + Bsx1 + 6sWi|Is = x, 2] and
dXs = bs(Xs, x0)ds + 0sdWs, Xs—o =

It holds Law(X ) = Law(Is|zg). In particular Xs—; ~ p*(+|z0)

> Why? Ito’s formula: dI; = (&sxo + By + csWs)ds + osdWs

» Replacing drift by E[csxo + By + osWis|Is, xo| makes the SDE
Markovian while keeping time-marginals unchanged
Mimicking lemma, Markov projection [Gydngy 1986]
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Learning the generative dynamics from data

The drift b, (x, 20) = E[dsmo + Be1 + 0 Ws|Is = x, 2] J

» Fact: the drift bs(x, zo) is the unique minimizer of

1
Ly[bs] = / E[|bs(Is, z0) — cismo — Bsar — 6sW|*]ds
0

with sampled data (x¢, 1) we can evaluate L;
» Algorithm: parametrize Bs by neural nets, optimize L,
» Generative model: for any z, integrate to s = 1 the SDE
dX, = BS(XS,xO)dS + o dWy, Xoo = 70

This will approximately sample p*(-|zo) if bs ~ by
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Experiments: Forecasting 2D stochastically forced NSE

101k

1000

10-1k

1072}

—— true conditional

— = forecast conditional

" 10° 107
true v.s. forecast conditional mean true v.s. forecast conditional std enstrophy spectrum (v.s. k)

Figure: Lag 7 = 2 (autocorrelation 10%). Resolution 128 x 128, using 200K
data pairs for training 2M-parameter-Unet

> As a surrogate model: for this example 100 times faster than
running the stochastic PDE simulation
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Experiments: Forecasting and superresolution

Let w; be of 32 x 32 while w;, is of 128 x 128

101 L

100

101}
2| k=16
10 = truth b
== super resolution :
== low resolution
1073 :

10° 00
enstrophy spectrum (v.s. k)

forecast w41 forecast w¢ 4 1

Figure: Probabilistic forecasting with low resolution input, using 200K data
pairs for training 2M-parameter-Unet
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A family of SDEs can be used. Which to choose?

Fact: It holds that Law(X) = Law(X?) for
dX? = bi(XY, z0)ds + gsdW
with bd(x, x¢) = bs(x, z0) + %(gf — 02)V log ps(z|z0)

» Fact due to Fokker-Planck equations and V - (pV log p) = Ap
> Vlog ps(z|z) is the score, with score an estimator

—

« " g 7 7 1
New “learned” drift: bJ = bs + 5(9‘3 — o%)score
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A family of SDEs can be used. Which to choose?

Fact: It holds that Law(X) = Law(X?) for
dX? = bi(XY, z0)ds + gsdW
with bd(x, x¢) = bs(x, z0) + %(gf — 02)V log ps(z|z0)

» Fact due to Fokker-Planck equations and V - (pV log p) = Ap
> Vlog ps(z|z) is the score, with score an estimator

—

« " g 7 7 1
New “learned” drift: bJ = bs + 5(9‘3 — o%)score

Many existing studies on how to choose g in generative models
» ODEs versus SDEs, numerical schemes, perturbation analysis

[Song et al 2021], [Song, Meng, Ermon 2021], [Karras, Aittala, Aila, Laine 2022], [Zhang,

Tao, Chen 2023], [Albergo, Boffi, Vanden-Eijnden 2023], [Cao, Chen, Luo, Zhou 2024]

Answer to this question would depend on the choice of “metric”
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KL divergence over path measures as the “metric”: theory and practice

Theorem: Let PX* and PX? denote the path measures of

» the truth SDE solution X9 = (X{),c,) with drift b9

> the approximation X9 = (ng)se[o,l} with learned b9

Then, the path-level KL optimization
min KL[PX ||PX?]
g
has an explicit solution g = ¢" with

3, [V
V505

d
gf = (2502 — log
s

1 . ﬁs 1
Interpretation: N is

~ “signal-to-noise ratio”

since by definition

Is = asxo + Bsz1 + oW
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KL divergence over path measures as the “metric”: theory and practice

Theorem: Let PX* and PX? denote the path measures of
» the truth SDE solution X9 = (X{),c,) with drift b9
> the approximation X9 = (Xé])se[(),l} with learned b9

Then, the path-level KL optimization . 5. .
Interpretation: \/;—; is
min KL[PX’ || P*’] , , ,
g ~ “signal-to-noise ratio”

has an explicit solution g = ¢gF with | gince by definition

1/2
Bs / I, = asxg + Bsr1 + os Wi
V505

d
gf = (2502 — log
s

SDE with o,dW, SDE with g¥'dW, ODE with Gaussian base

8.49e-3+1.57e-3 2.79e-3%9.19e-4 4.63e-3+9.63e-4

Empirical end-point KL err (total enstrophy of truth v.s. generated samples) ,,/.



Further insights: What is special about this ¢"'?

Theorem: The optimal XF := X9 is an Féllmer process
> Solution to Schrodinger bridge when one endpoint is point mass

priorj|

XY = argmin KL[PX||PX s.t. Xy ~ p*(:|wo)
X

Standard Follmer: XP™" js 3 Brownian motion
In our algorithm: XP'i°r is induced by the choices of o, s, 0

Po

Initial x,

= P1
uncontrolled PX*" xPrior
i

Y :
Schrodinger Follmer

Interpretation: such optimal g™ is a “Bayes”/control solution!

[Schrodinger 1932]. Follmer process [Follmer 1986] wide applications in functional inequality

[Lehec 2013] and in sampling [Zhang, Chen 2021], [Huang et al 2021], [Vargas et al 2023], etc
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Further insights: What is special about this ¢"'?

Theorem: The optimal XF := X9 is an Féllmer process

» Solution to Schrédinger bridge when one endpoint is point mass
XF = argmin KL[PX |[PX™™] s.t. X7 ~ p* (o)
X

Standard Féllmer: XPU°T js a Brownian motion
In our algorithm: XP™°" js induced by the choices of a, Bs,05

Outlook: Design physically motivated X P (ongoing and future work)

» Multiscale interpolation I, connected to renormalization group
e.g., [Bauerschmidt, Bodineau, Dagallier 2023]
» Function space noise with spectrum decay

e.g., [Lim et al 2023], [Pidstrigach, Marzouk, Reich, and Wang 2023]

» Improved design choices for better numerical performance
e.g., [Lim, Wang, Yu, Hart, Mahoney, Li, Erichson 2024]
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Outline of the talk

Design and application of generative diffusions

> Probabilistic imaging (real data black hole imaging)
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Black hole imaging: Combining generative models and MCMC
[Sun, Wu, Chen, Feng, Bouman 2023], [Wu, Sun, Chen, Zhang, Yue, Bouman 2024]

Real-world imaging system

Fourier spectrum A 3 Bayes inverse problem

= T M . .
Interferometry & /7 € » Data: nonlinear functions of
— Y R
2Ty Fourier components of the
E s . .
image (very sparse and with

E-W frequency (u)

Diffusion model image prior strong noise)

» Prior: black holes simulated
based on General Relativistic
Magnetohydrodynamics
(GRMHD)

Goal: sample ppost X Pprior X Liikelihood

Approach: learn ppior Using generative dynamics and combine with
designed MCMC dynamics to sample ppost
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Experiments with real data: PnP-DM (plug-and-play diffusion models)

PnP-DM uses split-Gibbs (alternating prior and likelihood update)

Real-world imaging system | Posterior sampl |

Fourier spectrum

A Interferometry
_—

NS frequency ()

Proposed
method

E-W frequency (1)
Diffusion model image prior

Official image by EHT

* Experiment is performed with
real data for the M87 black hole
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Summary

High dimensional sampling with applications in scientific computing

» Delocalization of high dimensional stochastic errors
(analysis inspired by observation in molecular dynamics)
[Chen, Cheng, Niles-Weed, Weare 2024]

» Interpolation and transport stochastic dynamics
(design motivated by probabilistic forecasting)
[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]

» Generative priors and MCMC sampling
(real imaging applications)

[Sun, Wu, Chen, Feng, Bouman 2023], [Wu, Sun, Chen, Zhang, Yue, Bouman 2024]

» Goal: some more principled analysis and design of dynamics

Thank you!
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Unadjusted Langevin bias: asymptotic perspective using PDEs

Bias of observables: asymptotic expansion
Assume f is sufficiently regular and | fm = 0. Then, it holds

/fﬂ'—/fﬂ'h:—;Lh(/(Af—‘rfAlOgﬂ)?T)+O(h)

» Obtained by comparing the generators of = and 7,
Lu(x) = Vogm(x) - Vu(z) + Au(x)
1
Lru(r) = 3 (Efu(z + hV logm(x) + V2hE)] — u(x))

» For Gaussian m, [ f(Alogm)m = 0. The first order term [ 7Af
only depends on the coordinates that f takes

» Delocalization of observable bias: hold for perturbation of
Gaussians too, up to o(h)

Poisson argument [Mattingly, Stuart, Tretyakov 2010]. Related discussion on averaged

observables [Bou-Rabee, Schuh 2023], [Durmus, Eberle 2024] 30/28



Black hole imaging We adopted the same BHI setup as in [61]]. The relationship between the
black hole image and each interferometric measurement, or so-called visibility, is given by

Vi, =glgh- e o9l - F} y(x) + 1m0y €C, (14)

where a and b denote a pair of telescopes, ¢ represents the time of measurement acquisition, and
F!,(x) is the Fourier component of the image @ corresponding to the baseline between telescopes a
and b at time ¢. In practice, there are three main sources of noise in (I4): gain error g, and g, at the
telescopes, phase error ¢, and ¢!, and baseline-based additive white Gaussian noise 7,,5. The gain
and phase errors stem from atmospheric turbulence and instrument miscalibration and often cannot
be ignored. To correct for these two errors, multiple noisy visibilities can be combined into data
products that are invariant to these errors, which are called closure phase and log closure amplitude
measurements [11]]

Ve = £(VapVbeVae) 1= AT 4 (@),
t t
. VElIVEl\ _ 4
Bl (IV:,CIIV:‘,dI = AT (@)

where Z computes the angle of a complex number. Given a total of M telescopes, there are in
total W closure phase and w log closure amplitude measurements at time ¢, after
eliminating repetitive measurements. In our experiments, we used a 9-telescope array (M = 9) from

the Event Horizon Telescope (EHT) and constructed the data likelihood term based on these nonlinear

closure quantities. Additionally, because the closure quantities do not constrain the total flux (i.e.

summation of the pixel values) of the underlying black hole image, we added a constraint on the total
flux in the likelihood term. The overall potential function of the likelihood is given by
logcamp logcamp |12 flux || 2
A5 () — w13 [AG"" () —ya I3 1w —y™ |,
flay)=> o2 +3 + . (15)

2
2a’flux

2
tc cph td 2alogcamp

In this equation, yf1* is the total flux of the underlying black hole, which can be accurately measured.

We use y = (yc"h,ybg“"‘p, yﬂ“x) to denote all the measurements and ¢, d as the indices for
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Black hole imaging: experiments with two modal synthetic data

(@ Ground truth Mode 2 Mode 3

32
2 19.79

aBew ueapy

sa|dwes Jous1soy

®
fully sa

> DPS: existing benchmark [chung et al 2022]
» Ours: PnP-DM (plug-and-play diffusion models) using split

Gibbs, with mathematical consistency guarantee
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Forecasting videos: CLEVER datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A new,
red cube enters the scene. Third row: Real trajectory. Fourth row:
Generated trajectory. A new green cube enters the scene, and collision
physics is respected (green ball hits red cube).
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Forecasting videos: quantitative results

KTH CLEVRER
Method 100k 250k 100k 250k
RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 3913 547  39.31
Auto-enc. 33.45 33.45 279 279

Table: FVD computed on 256 test set videos, with the model generating 100
completions for each video. Results are reported for 100k grad steps and
250k. The auto-enc represents the FVD of the pretrained encoder-decoder
vs the real data. It serves as a bound on the possible model performance, as
the modeling is done in the latent space of a pre-trained VQGAN.

RIVER [Davtyan, Sameni, Favaro 2023]
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Proof of delocalization of bias: sketch of arguments

Synchronous coupling of Brownian motion

» Continuous time Yz, ¢ € [kh, (k + 1)h] and unadjusted Xy,
Xks1yn = Xin — hVV(Xin) + V2(Bey1yn — Bin)

coupled with the same B;

> Define Y (10 = Yan — BVV (Yin) + V2(B(t1)n — Bin)

\/EHX(kJrl)h — Yt 1)nl3]
< \/EHX(k-i-l)h — Y (onnld] + \/EH?(k—i-l)h = YernlZ)

(a) (b) “discretization error”

> Part (b): discretization error = O(3h3/2,/log(2d))
(reminiscent of the fact that E[| B;|%,] < tlog(2d))
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» Part (a):

(a) = \/EHth — Y — h(VV(th) - VV(Ykh)”go]
= \/EHHk(Xk:h = Yin) |4

where Hy, = I —h [} V2V (uXyp + (1 — u)Yi)du

» When V2V is diagonal, |Hy|s = |Hgl2 < 1 — ah < exp(—ah) so we
get contraction

» In general, Hy, is non-diagonal but sparse. We have
|Hy|oo < v/51|Hil2 < /51 exp(—ah)

Not a one-step contraction in general
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Sketch of arguments: multiple-step coupling

» One-step iteration

VEIX s 1yn = Yoernnl2] < VEIHi(Xin — Yin)|2] + error(1)

» Moving back and two-step iterations

VE[Hy(Xin — Yan)|2] + error(1)
<VEH (X, — Vin) 2] + VEIHk (Vi — Yin)|2] + exror(1)
=/El HuHy—1 (X (k—1yn — Yie—1yn)|2] + error(2)

> N-step iterations

\/E[|X(k+N)h = Yt nynl3]
S\/E[|Hk+N71Hk+N72 -+ Hi(Xgh — Yin)|oo) + error(N)

< exp(—aNh)WVdr\/E[| Xgn — Yin|2,] + error(N)

Here N ~ (log d)/h leads to a contraction
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Sketch of arguments: bound discretization errors

How to control error(N)?

» For N = 1:
E[IY (k1) — Yier1ynl2)
(k+1)h
=E[| VV(Yy) = VV (Yin)dt[3]
kh

(k1)
gh/ E[|VV (Y;) — VV (Yin)|% |dt
kh

(k+1)h
< | / V2V (uY; 4+ (1 — 0)Yin) (Vs — Yen)|2.]dudt

(k+1)h
§h51ﬁ2/ E[|Y; — Yin|2]dt = hs1 8% - O(h? log(2d))
kh
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Sketch of arguments: bound discretization errors

How to control error(N)?

» For N = 2:
E(|Hi(Ykn — Yin)| %)
kh

<h - E[|Hy(VV (Y:) = VV (Yieo1yn)) |20 )dt
k—1)h

kh 1
Sh/ : / E[|Hy(V?V (uY; + (1 — w)Y(—1yn)) (Ve — Y(k71)h)|zo]dudt
k—1)h

> Now, how to bound | Hj,(VZV (uY; + (1 — w)Y(—1)1))]oc?
» A simple bound
| He(V2V (uY; + (1 = w)Y (1)) |oo < v/5208 exp(—ah)

> [ssue: The bound does take into account sparsity, but the
sparsity growth so does not depend on h
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Sketch of arguments: sparsity growth bound

Consider the general N-case

> Let Jy = |Hpyn-1Hpin—2 - Ho(V2V (uY; + (1= w)Y(e_1)n) oo
then simple bound |Jn |00 < B/SN exp(—aNh)

The issue again is that s does not depend on h

» Improved bound by using sparsity bound for terms involving
small powers of i and using maximum bound for terms
involving large powers of h

[Tnloo < B(y/5r exp(—aNh) + Vdexp(~r)
forany r > e’ Nhf3
> In particular, taking 7y = [e2Nhj3 + log v/d] leads to
I ]oo < 2B+/5ry exp(—aNh)

Here r scales with physical time Nh
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Sketch of arguments: back to discretization errors

Back to the estimate of error(/N)
> For N = 2:

El|He(Yin — Yin) 2]

kh
<h /( ORI
k—1)h

kh 1
Sh/( : / E[|He(V?V (uY; + (1 — w)Ye—1)1)) (Y — Yie—1)n) |5 ]dudt
k—1)h Jo

kh

<dhs,, 5 exp(—2ah) / L (AT
(k=1)h

=4hs,., 3% exp(—2ah) - O(h?log(2d))

41/28



Sketch of arguments: back to discretization errors

Putting everything together
» For general IV:

N
error(N) < 23 (Z exp(—ah(i — 1))\/§> -0 (h3/2 log(2d)>

i=1

» Therefore, we get
Wa oo (Pl MYy T) < exp(—aNh)VdWs g (prn, 7) + error(N)

log(2\/a)-|
ha

» Using s, = O((k + 1)") and taking N = [

1 EAl
Wa oo (p(k+ Nyhs ™) < §W2,e°° (P, ™)+ hlog(2d) (O(g log(Qd)))
> Finally W, (my, ) < /R log(2d) (O (£ log(2d)))* "
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